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Results of ab initio calculations of the elastic constants for the hcp, bcc, double hcp �dhcp�, and fcc
magnesium in a wide range of pressures are presented. The calculated elastic constants are compared with
available experimental and theoretical data. We discuss the effect of the electron topological transition that
occurs when the hcp structure is compressed on results of calculations and consider possibility of observing the
hcp→dhcp transition on the magnesium Hugoniot.
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I. INTRODUCTION

At present, various properties of single-crystal and poly-
crystalline magnesium under ambient pressure have been
studied experimentally in rather detail. In particular, the elas-
tic constants of single-crystal magnesium were measured at
temperatures 4.2–300 K �Ref. 1� and their pressure deriva-
tives were measured at room temperature.2,3 Available are:
data on shock4,5 and static6–8 compressibility of magnesium
crystals; the melting curve is determined to 90 GPa;9–11 the
structural hcp→bcc transition at room temperature and 50
GPa �Ref. 12� which was predicted in the theoretical
works13,14 is experimentally observed. Several attempts
were made to theoretically determine the phase diagram
in the assumption that it included hcp, bcc, and liquid
magnesium.15–19

Improved diamond anvil techniques enabled experiments
to investigate structural transformations in crystals under
pressure at temperatures much higher than room tempera-
ture. The authors of Ref. 20 experimentally studied the equa-
tion of state and structural transformations in magnesium
crystals at pressures to 18.6 GPa and temperatures to 1527
K. At pressures above 9 GPa and temperatures above 1000 K
they observed the structural hcp→dhcp transition that could
not be observed and theoretically considered earlier. The
pressures and temperatures at which melting was observed
were in good agreement with available experimental and the-
oretical results. The existence of the dhcp structure in mag-
nesium was also indirectly indicated in the experiment21

which showed an anomalous broadening and splitting of the
optical phonon mode E2g in the � point at pressures 15–50
GPa and room temperature. The author of Ref. 21 believes
that this feature in the phonon spectrum of magnesium may
be related to the structural hcp→dhcp transition. Earlier the
possible existence of the dhcp structure in compressed mag-
nesium was also noted in the experiment.7

This work was stimulated by our desire to investigate the
properties of different crystalline structures of magnesium
because of practical interest in the best possible description
of its thermodynamic properties. We investigate electronic,
elastic and some thermodynamic properties of hcp, bcc,
dhcp, and fcc magnesium in a wide range of pressures with
the ab initio method FP-LMTO.22–24

II. CALCULATION METHOD

The dependence of energy on volume and unit cell shape

was calculated using the full potential linear muffin-tin or-
bital �FPLMTO� method.22 Our electron structure calcula-
tions were done for compressions � /�0 from 0.909 to 2 at
T=0 K. Hereinafter �0=1 /V0 is magnesium density at am-
bient pressure and T=0 K, and V0=154.487 a.u. is the ex-
perimental volume at P=0, T=0 K from data on the thermal
expansion of magnesium.25 For hexagonal phases �hcp,
dhcp�, the equilibrium value of the lattice parameter c /a was
found from the condition of energy minimum as a function
of c /a at constant volume. Pressure was determined through
the numerical differentiation of energy as a function of vol-
ume.

Elastic constants were calculated from the second deriva-
tives of the specific energy with respect to chosen strains for
several types of distortion. The position of atoms was opti-
mized for all deformations in accordance with the existing
degrees of freedom. A detailed description of the method we
used here to calculate elastic constants under pressure can be
found in Ref. 26. The thermal motion of nuclei was consid-
ered with the modified Debye model described in Ref. 23. In
this model the contribution of thermal motion of nuclei to
thermodynamic functions is expressed with only one param-
eter �D—Debye temperature that is defined by elastic con-
stants and only dependent on volume. The contribution from
the thermal excitation of electrons was considered in accor-
dance with perturbation theory.

In order to correctly compare the thermodynamic poten-
tials of different crystalline structures and accurately deter-
mine elastic constants, the numerical error of the calculated
energy must be lower than 0.1 mRy/atom. A number of ten-
tative calculations were done to select some basic parameters
of the method22 that ensure such an error in the energy of
magnesium. As a result, these parameters of the FPLMTO
method were selected to be as follows. Electrons in the 1s
state were taken as core electrons and electrons which occu-
pied 2s, 2p, and 3s states in the isolated atom were taken as
valence electrons. In spherical harmonic expansions, the pa-
rameters of the method22 are as follows: lmax

b =2 in the wave
function representation, lmax

w =6 in the potential and charge
density expansion, and lmax

� =12 in the Hankel function re-
expansion in the Bessel functions. The d-type orbitals are
present in the basis because these states are of no small effect
on energy. We used ten centers of linearization and four en-
ergy tails that were selected in accordance with the algorithm
proposed in Ref. 24.
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The mesh for integration in reciprocal space with the lin-
ear tetrahedron method was constructed in the prism-shaped
Brillouin zone by dividing each edge into the same number
of parts nk. We gave special attention to the selection of this
parameter defining the number of k� points to be used in
calculations. As mentioned earlier in Refs. 27 and 28 the
accuracy of determining the parameter c /a and elastic con-
stants under pressure is strongly dependent on the mesh fine-
ness in the Brillouin zone. In particular, this is related to the
electron topological transitions �ETT� that occur in crystals
under pressure.28 As a result, we found an ETT in hcp mag-
nesium, which occurred under compression and influenced
on calculated results. We also determined an acceptable
value of nk that helped minimize that influence. Figure 1
shows energy and density of state on the Fermi surface ver-
sus c /a for different numbers of k� points at � /�0=1.1765
��7.7 GPa�. It is seen that at nk=16 the dependence E�c /a�
has a break near the minimum and the density of states on
the Fermi level has a characteristic peak which corresponds
to the ETT shown in the insert of Fig. 1 �surfaces a and b�.
The ETT occurs in the second valence band. If increase nk to
30, then, as seen in Fig. 1, the effect of the ETT on E�c /a�
becomes much weaker and the peak in the density of states
becomes much lower.

To see how the ETT influences on the pressure depen-
dence of elastic constants at different meshes in the k� space,
consider deformation of hcp lattice in the parameter c /a.

This deformation defines the following combination of elas-
tic constants:26

C�P� = �C11 + C12�/2 − 2C13 + C33.

We calculated C�P� for nk=16, 30 and 80. Obtained results
are shown in Fig. 2. It is clearly seen that C�P� is not
smooth at nk=16. In this case, near P�7.7 GPa, where
the ETT occurs in the unstrained crystal, the curve C�P�
starts to oscillate. The break of the curve E�c /a� makes the
calculated elastic constants be strongly dependent on the
method used to approximate calculated results. When nk is
increased to 30, oscillations disappear and C�P� becomes
smooth and this corresponds to E�c /a� with no break. The
further increase of nk changes the elastic constants by no
more than 1%.

Thus, in integration over the Brillouin zone in the k� space,
the value of the parameter nk defining the mesh in the space,
was taken to be 30. As a result, the irreducible part of the
Brillouin zone in the case of the hcp structure was found to

FIG. 2. The pressure dependence of the combination of elastic
constants C�P� for hcp magnesium at nk=16, 30 and 80.

FIG. 3. Calculated pressure versus compression for hcp �solid�
and bcc �dashed� magnesium on the isotherm T=300 K in com-
parison with experimental results at room temperature: �—the
point of the hcp→bcc transition, �Ref. 12� �—hcp magnesium
�Ref. 32�, *—bcc magnesium, �Ref. 32�, � �Ref. 6�, � �Ref. 7�,
and � �Ref. 20�.

FIG. 4. Gibbs potential difference versus pressure for hcp, bcc,
dhcp, and fcc magnesium at T=0 K, plotted relative to the Gibbs
potential of the hcp structure.
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FIG. 1. Calculated energy and density of states on the Fermi
level versus c /a for hcp magnesium at nk=16 and 30. � /�0

=1.1765, E0=−401.161 Ry /atom. The Fermi surfaces a and b cor-
respond to the second valence band.
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contain 1456 k� points. Our studies showed that for the other
structures of interest, nk=30 was also sufficient to perform
calculations with required accuracy. In calculations we took
into account the Blochl corrections.29

The choice of form for exchange-correlation energy is
of an appreciable effect on calculated results. In the litera-
ture there are several approximations for the local exchange-
correlation functional �XC�. To this functional gradient cor-
rections can be added. The choice of XC is important be-
cause it is impossible to choose from among the existing
expressions the best one for all materials since the use of
one and the same approximation of exchange-correlation
energy for different materials results in different accuracy.
To choose the best XC for magnesium, we, for its hcp
structure, calculated the equilibrium volume V0, bulk mod-
ulus B0, and its pressure derivative B0� for different
XC and then compared them with experimental results.
As a result, we decided to do further calculations with
the Barth-Hedin functional30 together with gradient
corrections.31 This potential gives good agreement with the
experiment.

III. CALCULATED RESULTS

To judge about the accuracy of our calculations we
compared them with available experimental data. Figure 3
shows the calculated isotherm T=300 K with account for
the hcp→bcc transition along with experimental data. The
thermal motion of nuclei was considered on the basis of the
modified Debye model.23 The calculated curve is seen to
agree well with experiment. The values of V0, B0, and B0� at
T=300 K were calculated to be, respectively, 156.84 a.u., 33

GPa, and 4.32 which is also in agreement with experimental
data.

Using the calculated energies and pressures, we found
the Gibbs potentials G=E+ PV of magnesium structures un-
der study versus pressure at zero temperature. Figure 4
shows these potentials plotted relative to the Gibbs potential
of hcp magnesium. Our calculations show that the hcp struc-
ture is the most stable at ambient pressure which is in agree-
ment with experiment. The increase of pressure at T=0 K
causes the transition from hcp to bcc. The pressure of the
transition is 47.3 GPa which agrees well with the
experiment,12 where the pressure was observed to be
50�6 GPa at room temperature. In our calculation the
change of volume in the hcp→bcc transition is 0.6%. This is
also in good agreement with �1% reported in.12 It is seen
from Fig. 4 that neither the dhcp, nor the fcc structure be-
comes most favorable in the pressure range under study at
T=0 K.

We also compared the calculated pressure dependence of
c /a with experiment. Figure 5 shows the calculated c /a�P�
for hcp magnesium along with experimental data at room
temperature. They seem to agree well. The calculated value
of c /a at P=0 is 1.626 and the corresponding measured
value varies from 1.623 to 1.626.6,7,20

Figure 6 shows the calculated c /a�P� for hhcp magne-
sium and experimental data at high temperature.20 They also
seem to agree well. Apparently the effect of temperature on
this parameter is small. Our calculations show that the effect
of pressure on it is small, too.

Consider next the accuracy of calculated elastic constants.
Table I contains elastic constants calculated in this work and

FIG. 5. c /a versus pressure at T=0 K for hcp magnesium in
comparison with experimental data at room temperature. The line
shows the calculation and the symbols show experimental data:
�,�Ref. 20� � �Ref. 6�, and � �Ref. 7�.

FIG. 6. c /a versus pressure at T=0 K for dhcp magnesium in
comparison with experimental data at temperatures from 1127 to
1477 K. The line shows the calculation and �-experimental data
from. �Ref. 20�

TABLE I. Calculated elastic constants �in GPa� for hcp magnesium at P=0, T=0 K in comparison with
experimental data.

C11 C33 C44 C66 C12 C13 G

Our calculation 63.44 68.47 18.32 18.65 26.15 21.07 19.4

Calculation33 60.77 65.35 15.32 17.37 31.36 20.97 16.4

Experiment1 63.48 66.45 18.42 18.75 25.94 21.70 19.8
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in Ref. 33 �GGA calculation� at zero pressure and tempera-
ture and experimental results extrapolated to T=0 K. It is
seen that first, our results excellently agree with experiment;
the error does not exceed 3%. Second, our calculations sat-
isfactorily agree with calculations from;33 the maximal de-
viation is about 20%. Much higher accuracy in our determi-
nation of elastic constants comes from our thorough
selection of the inner parameters of our calculation method.
Table I also contains values of the shear modulus G for
the hcp polycrystal; G= �GV+GR� /2, where GV and GR are
shear moduli averaged according to Voigt and Reuss.34,35

Our value of G is seen to agree well with experiment.
Using the dependences of elastic constants on pressure
obtained in this work, we calculated their pressure deriva-
tives �Cij /�P at P=0. In Table II they are compared with
experimental data for hcp magnesium. The calculated deriva-
tives are seen to differ from experimental values by no more
than 5%. This suggests that our elastic constants versus pres-
sure are calculated at high accuracy. Table II also contains
the calculated and experimental value of shear modulus de-
rivative for the polycrystal �G /�P; it is seen to agree well,
too.

Having seen that our calculations are highly accurate, turn

now to the results of the magnesium elastic constants calcu-
lation at � from 0.909, �0 to 2 �0 at T=0 K. Their values for
hcp, dhcp, bcc, and fcc magnesium versus relative volume
are provided in Tables III and IV.

We compared our pressure dependences of elastic con-
stant for hcp magnesium with those calculated in the LDA
approximation.37 Figure 7 demonstrates the result of this
comparison. With account for the different calculation meth-
ods and forms of the exchange-correlation potentials one can
admit that the results satisfactorily agree. Unlike the elastic
constants obtained in Ref. 37 our ones vary smoothly, includ-
ing in the region �10 GPa where the ETT mentioned shows
itself. Unphysical oscillations due to calculation errors in the
ETT region are especially well seen on the curve constructed
from results obtained in Ref. 37 for the elastic constant C66
= �C11−C12� /2.

In Ref. 38 the pressure dependences of shear modulus for
hcp and bcc magnesium at T=300 K were calculated with
use of generalized pseudopotential theory. We also calculated
them for hcp, bcc, and dhcp magnesium, but at T=0 K.
Figure 8 shows our results and results from Ref. 38. With
account for the different temperatures it is seen that the com-
pared values of G�P� agree quite well. The difference is no

TABLE II. Calculated pressure derivatives of elastic constants and shear module for hcp magnesium at
P=0 and T=0 K and experimental results at room temperature.

�C11

�P

�C33

�P

�C44

�P

�C66

�P
�G
�P

Calculation 6.414 7.250 1.628 1.331 1.65

Experiment2 6.23 7.29 1.60 1.37

Experiment3 6.13 7.22 1.58 1.36

Experiment36 1.70

TABLE III. Calculated elastic constants of hcp and dhcp magnesium at T=0 K �in GPa�.

�0 /� C11 C12 C13 C33 C44

hcp structure

1.10 42.500 14.798 13.015 43.316 12.695

1.00 61.375 24.962 20.370 66.348 17.873

0.90 89.188 42.408 30.341 96.348 24.442

0.80 126.88 69.488 46.791 143.41 33.261

0.70 182.97 114.72 73.776 214.73 44.668

0.60 267.54 193.10 122.11 331.72 58.952

0.55 326.87 254.11 160.79 420.28 68.136

0.50 402.26 344.05 215.84 533.46 74.928

dhcp structure

1.10 41.845 14.447 13.030 44.929 12.235

1.00 60.139 25.870 20.136 67.409 16.837

0.80 127.23 71.835 46.047 143.70 29.421

0.70 180.80 118.05 72.629 214.03 36.534

0.60 257.72 203.25 120.77 329.65 48.255

0.55 312.41 268.47 159.34 416.29 57.020

0.50 385.01 362.33 213.06 527.17 64.362
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higher than 7%. The curves shown in Fig. 8 for the hcp and
dhcp structures are nonmonotone. Both the structures under
pressure tend to softening, and the dhcp to a greater extent.

Our calculations show that the bcc structure is mechani-
cally unstable at T=0 and low pressures �P�10 GPa�. This
is in agreement with calculations done with generalized
pseudopotential theory18,38 and phonon spectrum calculations
for bcc magnesium.19 And vice versa, fcc at T=0 K is me-
chanically unstable at high pressure �P�20 GPa�.

We have also calculated three Higoniots: the first in the
assumption that the hcp structure does not change in com-
pression; the second in the assumption that the hcp→bcc
transition occurs on the Hugoniot; and the third in the as-
sumptions that the hcp→dhcp transition occurs on the Hugo-
niot. Figure 9 shows the results we obtained and experimen-
tal data.4,5 It is seen from the figure that at pressures P
�35 GPa experimental data are closest to the Hugoniot

section that corresponds to the bcc structure. On the other
hand, the position of the experimentally found20 interface
between the hcp and dhcp phases �see Fig. 10� suggests that
the dhcp structure can appear on the Hugoniot if only P
�20 GPa.

Thus, we may assume that if the Hugoniot crosses the
region where the dhcp phase exists, this occurs within a rela-
tively narrow range of pressures 20� P�35 GPa where all
the three curves shown in Fig. 9 practically coincide. The bcc
phase is stable above and the hcp phase is stable below this
range of pressures. Additional experiments and calculations
are needed to determine the proper position of the dhcp
structure on the phase diagram. In particular, the experimen-
tal measurement of sound velocity behind a shock wave front
may be useful. Our estimates suggest that the measurement
of the transverse sound velocity is more promising. So, dur-
ing the hcp→dhcp transition the transverse sound velocity is
expected to change by �7%, while the longitudinal one will
change by no more than 2.5%.

IV. CONCLUSION

Using ab initio calculations, we have investigated the be-
havior of different magnesium structural modifications under
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FIG. 7. Elastic constants versus pressure at T=0 K for hcp
magnesium. Filled symbols show our results and unfilled ones show
data from. �Ref. 37�

FIG. 8. Shear modulus G versus pressure for polycrystalline
magnesium. The lines show our results at T=0 K. The symbols
show results from Ref. 38 at T=300 K: � hcp, � bcc.

FIG. 9. Magnesium Hugoniot on �P ,�� plane. Our results are
shown by lines: the solid is for the hcp structure, the dashed is with
the hcp→bcc transition, and the dotted-and-dashed is with the
hcp→dhcp transition. Symbols show data from shock experiments:
� �Ref. 5� and � �Ref. 4�.

TABLE IV. Calculated elastic constants of bcc and fcc magne-
sium at T=0 K �in GPa�.

�0 /� C11 C12 C44

bcc structure

1.10 20.896 22.849 22.029

1.00 34.277 34.303 31.499

0.90 54.869 50.574 43.604

0.80 86.137 74.921 61.285

0.70 136.51 112.29 84.626

0.60 217.38 176.36 116.80

0.55 277.49 226.13 136.40

0.50 359.78 293.74 159.05

fcc structure

1.10 31.061 19.652 175.11

1.00 44.092 31.409 252.02

0.90 61.565 49.241 373.41

0.80 86.177 76.676 533.50

0.70 120.95 122.31 767.26

0.60 181.79 196.30 1116.7

0.50 289.50 329.34 1647.6
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pressure. The elastic and thermodynamic properties of hcp,
dhcp, bcc, and fcc magnesium under pressure were deter-

mined. We considered the question concerning the accuracy
of the elastic constants Cij we calculated and the effect of the
electron topological transition on accuracy. It was shown that
the effect of the isolated ETT on the accuracy of calculation
Cij could be done insignificant by taking a large enough
number of k� points in the Brillouin zone. Our pressure de-
pendences of c /a, elastic constants, and polycrystalline shear
moduli for magnesium structures under study agree well
with available experimental data and data from other calcu-
lations. The estimate of the sound velocity changing behind
the shock front due to the structural hcp→dhcp transition are
presented.
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